

CO2 storage projects in Europe

www.iogpeurope.org

IOGP Europe

Avenue de Tervueren 188A, B-1150 Brussels, Belgium

Overview of existing and planned CO2 storage projects in Europe

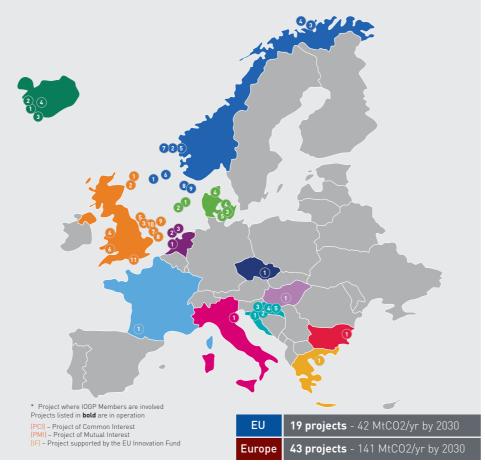
BULGARIA CROATIA 1. Petrokemija Kutina* 2. Bio-Refinery Project* 4. CO2 EOR Project Croatia* **CZECH REPUBLIC** 1. CO2-SPICER 3. Stenlille demo CO2-storage 5. Ruby FRANCE

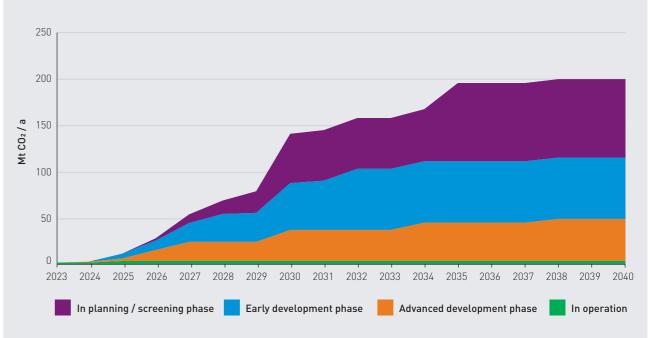
1. Pycasso* (PCI

GREECE 1. Prinos CCS (P

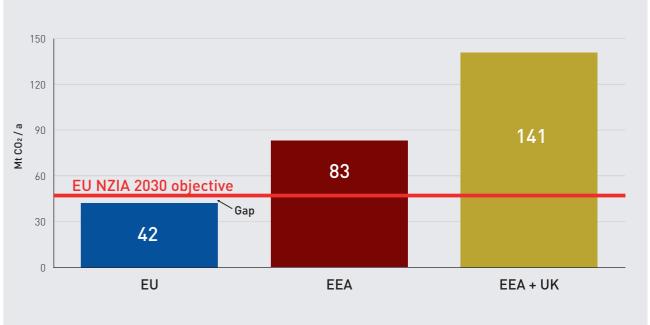
1. MOL-Hungary CCS Project*

ICELAND


- 1. Orca
- 3. Coda Terminal (III 4. Mammoth


7. Bacton Thames Net Zero initiative

8. Poseidon (UK)

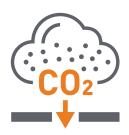

11. Solent Cluster*

Build-up of CO₂ storage injection capacity in Europe

Regional breakdown of CO₂ storage injection capacity by 2030

Key numbers

CO₂ STORAGE **PROJECTS**


COUNTRIES WITH CO₂ STORAGE **PROJECTS**

MT CO₂/YEAR CO₂ storage injection capacity by 2030

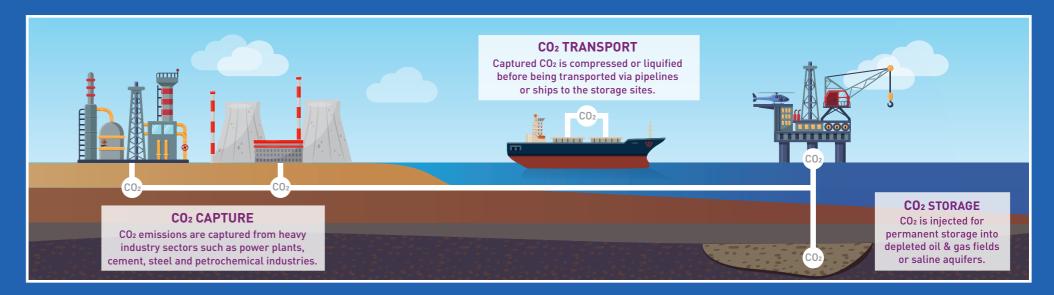
CO₂ STORAGE **PROJECTS**

COUNTRIES WITH CO2 STORAGE

MT CO₂/YEAR CO₂ storage injection capacity by 2030

Carbon Capture, and Storage

CCS is a set of technologies that enable the Capture, Transport and Storage of CO₂.


CCS is a proven and safe technology. CO₂ has been captured, transported and stored in Europe successfully since 1996 (Sleipner project, Norway).

It is a key technology for Europe to meet climate neutrality.

More CCS resources at iogpeurope.org

How it works

The 3 segments of the CCS value chain

CCS be deployed at scale, often repurposing existing infrastructures

Where can CCS make a difference?

Decarbonisation of hard-to-abate industries

In the EU, steel, cement, chemical and refining sectors emit 37% of total CO₂ industrial emissions. CCS is one of the only technological options to enable emission reductions in hard-to-abate industries.

Energy transition

CCS can be applied to gas-fired power plants which provide flexibility to an electricity grid with a higher share of intermittent renewables.

Low carbon hydrogen production

Hydrogen production based on natural gas decarbonized with CCS is the most cost-effective. It can supply industrial sectors and decarbonize sectors which cannot be electrified such as aviation and maritime transport.

Negative emission

Large scale negative emissions can be achieved when BioEnergy production is combined with CCS (BECCS) or when Direct Air Capture is combined with CCS (DACCS).

A European CO2 storage ambition

IOGP Europe promotes an ambition on CO2 storage injection capacity availability.

Ambition level of 0.5 to 1.0 GtCO₂ storage availability per year by 2050

Scope covering EU, EEA and the UK

Requires a comprehensive EU policy framework

Avenue de Tervueren 188A, B-1150 Brussels, Belgium T: +32 (0)2 790 7762 E. reception-europe@iogp.org

IOGP Headquarters

T. +44 (0)20 3763 9700 E: reception@iogp.org

IOGP Americas

T: +1 713 261 0411 E: reception-americas@iogp.org

IOGP Asia Pacific

T: +60 3-3099 2286 E: reception-asiapacific@iogp.org

IOGP Middle East & Africa

T: +20 120 882 7784 E: reception-mea@iogp.org

www.iogpeurope.org www.iogp.org